skip to main content


Search for: All records

Creators/Authors contains: "Lewandowski, Jörg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract. Groundwater table dynamics extensively modify the volume of the hyporheic zoneand the rate of hyporheic exchange processes. Understanding the effects ofdaily groundwater table fluctuations on the tightly coupled flow and heattransport within hyporheic zones is crucial for water resourcesmanagement. With this aim in mind, a physically based model is used to explorehyporheic responses to varying groundwater table fluctuationscenarios. The effects of different timing and amplitude of groundwater tabledaily drawdowns under gaining and losing conditions are explored in hyporheiczones influenced by natural flood events and diel river temperaturefluctuations. We find that both diel river temperature fluctuations and dailygroundwater table drawdowns play important roles in determining thespatiotemporal variability of hyporheic exchange rates, temperature ofexfiltrating hyporheic fluxes, mean residence times, and hyporheicdenitrification potentials. Groundwater table dynamics present substantiallydistinct impacts on hyporheic exchange under gaining or losing conditions. Thetiming of groundwater table drawdown has a direct influence on hyporheicexchange rates and hyporheic buffering capacity on thermaldisturbances. Consequently, the selection of aquifer pumping regimes hassignificant impacts on the dispersal of pollutants in the aquifer and thermalheterogeneity in the sediment. 
    more » « less
  2. Abstract. A comprehensive set of measurements and calculated metricsdescribing physical, chemical, and biological conditions in the rivercorridor is presented. These data were collected in a catchment-wide,synoptic campaign in the H. J. Andrews ExperimentalForest (Cascade Mountains, Oregon, USA) in summer 2016 during low-dischargeconditions. Extensive characterization of 62 sites including surface water,hyporheic water, and streambed sediment was conducted spanning 1st- through5th-order reaches in the river network. The objective of the sample designand data acquisition was to generate a novel data set to support scaling ofriver corridor processes across varying flows and morphologic forms presentin a river network. The data are available at https://doi.org/10.4211/hs.f4484e0703f743c696c2e1f209abb842 (Ward, 2019). 
    more » « less
  3. Abstract. Although most field and modeling studies of river corridorexchange have been conducted at scales ranging from tens to hundreds of meters,results of these studies are used to predict their ecological andhydrological influences at the scale of river networks. Further complicatingprediction, exchanges are expected to vary with hydrologic forcing and thelocal geomorphic setting. While we desire predictive power, we lack acomplete spatiotemporal relationship relating discharge to the variation ingeologic setting and hydrologic forcing that is expected across a riverbasin. Indeed, the conceptual model of Wondzell (2011) predicts systematicvariation in river corridor exchange as a function of (1) variation inbaseflow over time at a fixed location, (2) variation in discharge withlocation in the river network, and (3) local geomorphic setting. To testthis conceptual model we conducted more than 60 solute tracer studiesincluding a synoptic campaign in the 5th-order river network of the H. J. Andrews Experimental Forest (Oregon, USA) and replicate-in-time experimentsin four watersheds. We interpret the data using a series of metricsdescribing river corridor exchange and solute transport, testing forconsistent direction and magnitude of relationships relating these metricsto discharge and local geomorphic setting. We confirmed systematic decreasein river corridor exchange space through the river networks, from headwatersto the larger main stem. However, we did not find systematic variation withchanges in discharge through time or with local geomorphic setting. Whileinterpretation of our results is complicated by problems with the analyticalmethods, the results are sufficiently robust for us to conclude that space-for-timeand time-for-space substitutions are not appropriate in our study system.Finally, we suggest two strategies that will improve the interpretability oftracer test results and help the hyporheic community develop robust datasets that will enable comparisons across multiple sites and/or dischargeconditions. 
    more » « less
  4. Abstract

    Coupled groundwater flow and heat transport within hyporheic zones extensively affect water, energy, and solute exchange with surrounding sediments. The local and cumulative implications of this tightly coupled process strongly depend on characteristics of drivers (i.e., discharge and temperature of the water column) and modulators (i.e., hydraulic and thermal properties of the sediment). With this in mind, we perform a systematic numerical analysis of hyporheic responses to understand how the temporal variability of river discharge and temperature affect flow and heat transport within hyporheic zones. We identify typical time series of river discharge and temperature from gauging stations along the headwater region of Mississippi River Basin, which are characterized by different degrees of flow alteration, to drive a physics‐based model of the hyporheic exchange process. Our modeling results indicate that coupled groundwater flow and heat transport significantly affects the dynamic response of hyporheic zones, resulting in substantial differences in exchange rates and characteristic time scales of hyporheic exchange processes. We also find that the hyporheic zone dampens river temperature fluctuations increasingly with higher frequency of temperature fluctuations. This dampening effect depends on the system transport time scale and characteristics of river discharge and temperature variability. Furthermore, our results reveal that the flow alteration reduces the potential of hyporheic zones to act as a temperature buffer and hinders denitrification within hyporheic zones. These results have significant implications for understanding the drivers of local variability in hyporheic exchange and the implications for the development of thermal refugia and ecosystem functioning in hyporheic zones.

     
    more » « less